УДК 621.382.323

Поступила в редакцию: 07.05.2018 Принята в печать: 28.10.2018

ИССЛЕДОВАНИЯ ВОЗДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ПАРАМЕТРЫ ПЛЕНОК ОКСИДА АЛЮМИНИЯ, ОСАЖДАЕМЫХ В ПРОЦЕССЕ АТОМНО-СЛОЕВОГО ОСАЖДЕНИЯ

А.А. Дедкова¹, Н.А. Дюжев¹, В.Ю. Киреев^{1,*}, И.Э. Клементе², А.В. Мяконьких², К.В. Руденко²

- ¹ Национальный исследовательский университет «Московский институт электронной техники»,
- 124498, Москва, Зеленоград, пл. Шокина, 1
- ² Физико-технологический институт имени К.А. Валиева Российской академии наук,
- 117218, Москва, Нахимовский просп., 34
- *E-mail: valerikireev@mail.ru

Проведены исследования влияния воздействия лазерного излучения с длиной волны 970 нм и плотностью мощности в диапазоне 0,29–2,10 Вт/см² на процесс атомно-слоевого осаждения (ACO) пленок оксида алюминия из прекурсоров: триметилалюминий (TMA) + пары воды. Лазерное облучение осуществлялось на стадиях откачки реактора после подачи прекурсоров. В результате комплексных исследований на основе спектральной эллипсометрии, атомно-силовой микроскопии, рентгеновской дифрактометрии и вторичной ионной масс-спектрометрии показано, что лазерное облучение:

- не изменяет скорость осаждения пленок оксида алюминия на кремниевые пластины;
- не изменяет поверхностный рельеф (шероховатость) на облученных и не облученных участках пленок оксида алюминия;
- не изменяет химический состав облученных и не облученных пленок оксида алюминия по глубине;

 – уменьшает на 5,0–10 % среднюю плотность пленок оксида алюминия на облученных участках по сравнению с необлученными участками.

ВВЕДЕНИЕ

Процессы атомно-слоевого или атомно-послойного химического осаждения из газовой фазы (ХОГФ) на основе метода молекулярной сборки или молекулярного наслаивания обычно обозначаются в русском сокращении как AC ХОГФ или ACO и в английском сокращении как AL CVD (atomic layer chemical vapor deposition) или ALD (atomic layer deposition) [1]. Эти процессы относятся к группе процессов ХОГФ с дискретной подачей реагентов, обычно называемых прекурсорами [2]. В основе механизма процессов АСО лежат многократно повторяемые циклические (дискретные) самоостанавливающиеся химические реакции молекул прекурсоров на поверхности подложки [3–5].

Основы метода молекулярной сборки или молекулярного наслаивания впервые были разработаны в Советском Союзе В.Б. Алесковским с коллегами в начале пятидесятых годов XX века на химическом факультете Ленинградского Технологического института им. Ленсовета [6–8].

Однако результаты работ советских ученых не были представлены в англоязычных изданиях, а авторские свидетельства имели гриф закрытости, и поэтому приоритеты были полностью утеряны. Во всей англоязычной литературе родоначальниками метода АСО считаются финские ученые во главе с профессором Т. Сантолой (T. Suntola), оформившие первый финский патент по разработке АСО в 1974 году и первый американский патент в 1977 году [9].

Типичный процесс ACO состоит из последовательных стадий подачи в реактор прекурсоров, разделенных во времени стадией продувки реактора инертным газом, удаляющим остатки прекурсоров и реакционно-активных продуктов реакции из объема реактора. На первой стадии осаждения первый прекурсор хемосорбируется на поверхности подложки до полного насыщения поверхностных состояний (центров адсорбции), что останавливает хемосорбцию.

Вторая стадия осаждения включает в себя продувку реактора инертным газом и удаление из его объема молекул первого прекурсора. На третьей стадии в реактор подается второй прекурсор, который реагирует с адсорбированным на поверхности подложки слоем первого прекурсора с образованием монослоя требуемого материала пленки и летучих побочных продуктов. На четвертой стадии производится продувка реактора инертным газом и удаление из его объема непрореагировавших молекул второго прекурсора и образовавшихся летучих побочных продуктов реакции [1, 4].

Такой цикл повторяется многократно и ведет к медленному послойному образованию на поверхности подложки плотной пленки, толщина которой управляется просто заданием числа повторений реакционных циклов. Благодаря тому что самоостанавливающиеся реакции осаждения в процессах АСО управляются адсорбционной способностью поверхности подложки по отношению к хемосорбирующему прекурсору, небольшие вариации (отклонения) операционных параметров, таких как расходы прекурсоров, давление в реакторе и температура подложки, не оказывают заметного влияния на технологические характеристики осаждаемых пленок.

Поэтому процессам ACO присущи исключительно высокие значения равномерности осаждения пленок по толщине и конформности покрытия топологического рельефа (*табл. 1*) [5]. В настоящее время существуют прекурсоры (реагенты) для ACO практически всех металлических, полупроводниковых и диэлектрических пленок, используемых в микроэлектронике [4].

Пленки, осаждаемые в процессах ACO, характеризуются низкими механическими напряжениями и отсутствием

Таблицы 1. Сравнительные характеристики процессов физического осаждения из газовой фазы (ФОГФ — PVD), процессов химического осаждения из газовой фазы (ХОГФ — CVD) с непрерывной подачей реагентов и процессов атомно-слоевого осаждения (ACO — ALD) [5]

Характеристика процесса	ΦΟΓΦ (PVD)	ΧΟΓΦ (CVD)	ACO (ALD)
 Типичная скорость осаждения v _a , нм/мин	100-1000	10–100	0,1-1,0
Типичные толщины осаждаемых пленок d, нм	20-1500	10-1300	1,0–50
Типичная равномерность скорости осаждения (нанесения) R, %	>95	>97,5	>99
Точность контроля толщины пленки при осаждении (нанесении) по времени, нм	±5,0	±1,0	±0,01
Степень конформности покрытия рельефа α _с , % (аспектное отношение рельефа AR)	50 AR = 10	90 AR = 10	100 AR = 60
Механизм процесса осаждения пленок	Физическое распыление	Газофазные химические реакции	Химические реакции на поверхности подложки
Степень влияния процессных (операционных) параметров на технологические характеристики пленок	Очень сильное влияние	Сильное влияние	Слабое влияние
Топологические нормы L, при которых обеспечивается качественное покрытие боковых стенок контактных отверстий, нм	Больше 100	(90–65)	Меньше 10

Примечания:

1. Степень конформности покрытия ступеньки (топологического рельефа) α_c = (s/z)·100, где s и z — соответственно толщина наиболее тонкого и наиболее толстого участков осаждаемой пленки на боковой стороне ступеньки.

2. Отношение глубины канавки к ее ширине, глубины отверстия к его диаметру и высоты ступеньки к ее ширине называется аспектным отношением (aspect ratio — AR).

52

пор. Кроме того, в реакторах АСО легко реализуется последовательное осаждение нескольких пленок разных материалов с точным контролем их соотношения по толщине [4]. Не подлежит сомнению, что процессы АСО будут вне конкуренции для изготовления микроэлектронных устройств и систем с нанометровыми размерами элементов с использованием нанотехнологий [1, 4]. Кроме того, процессы АСО незаменимы для формирования сверхтонких барьерных слоев из металлов и диэлектриков при изготовлении биосенсоров, биосовместимых протезов, суперконденсаторов и солнечных батарей [10-12].

В качестве основного недостатка процессов АСО следует отметить низкие скорости осаждения, что ограничивает их промышленное применение осаждением пленок толщиной до 50 нм. Исходя из проведенного теоретического анализа механизма процессов АСО [13-15], их скорость можно повысить двумя основными способами:

 повысить скорость химических реакций на стадиях подачи в реактор прекурсоров (реагентов) с помощью активации поверхности подложки лазерным излучением;

 сократить время стадий продувки реактора инертным газом с помощью ускорения процессов десорбции непрореагировавших прекурсоров и летучих продуктов реакции путем активации поверхности подложки лазерным излучением.

Однако повышение скорости химической реакции между молекулами прекурсоров 1 и 2 с образованием молекул осаждаемого материала пленки может происходить не только на облучаемой лазерным излучением области подложки, но и в объеме реактора, через который проходит лазерный пучок. Действительно, лазерное излучение может десорбировать с поверхности подложки хемосорбированный на ее поверхности первый прекурсор, например, молекулы воды. А дальше десорбированные молекулы первого прекурсора под воздействием лазерного излучения могут вступать в химические реакции с молекулами второго прекурсора (ТМА) в объеме реактора с образованием частиц материала пленки оксида алюминия.

Такие объемные химические реакции приводят к уменьшению плотности пленки и ее порошкообразной структуре, непригодной для микроэлектронного применения [1]. Хотя если удастся подавить объемные реакции, то возможность активации поверхностных химических реакций с помощью оптического излучения позволит проводить процессы АСО при более низких температурах. Это может быть критически важным, если на обрабатываемой пластине уже имеются сформированные структуры, а дефекты, вносимые плазменной обработкой, не позволяют применять плазмостимулированное АСО [4].

В литературе, доступной авторам, отсутствуют сведения, указывающие на то, что лазерное излучение оказывает или должно оказывать влияние на процесс атомно-слоевого осаждения (АСО). Однако стадии адсорбции и химической реакции могут стимулироваться с помощью лазерного излучения [1], воздействие которого удобно проводить на стадиях продувки реактора.

Целью настоящей работы является исследование возможностей регулирования скорости процессов АСО с использованием лазерного облучения поверхности подложки с пленкой осаждаемого материала на стадиях продувки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе исследовался процесс АСО пленок оксида алюминия (Al₂O₂), проводимый на установке FlexAL компании Oxford Instruments Plasma Technology, (Великобритания) (рис. 1). В качестве первого прекурсора использовалось металлоорганическое соединение триметилалюминий Al(CH₃)₃ (TMA). Этот прекурсор позволяет получать качественные пленки оксида алюминия при температурах пластины, расположенной на термостолике, порядка 300 °C. ТМА обладает высоким давлением насыщенных паров уже при комнатной температуре, что позволяет существенно сократить время дозирования и продувки, понизить температуру контейнера с прекурсором в процессе осаждения. Вторым прекурсором являются пары воды (H₂O).

В установке предусмотрена возможность плазменной активации одного из газовых реагентов, подаваемых через ввод 6 (рис. 1), в источник индукционно-связанной плазмы (inductive coupled plasma — ICP источник). Для предохранения керамического цилиндра ІСР источника от осаждения пленок, что может приводить к деградации его свойств, используется затвор, закрывающий ис-

Рис. 1. Схема установки атомно-слоевого осаждения FlexAL: 1 — камера реактора; 2 — пластина с осаждаемой пленкой; 3 — линия откачки турбомолекулярного насоса; 4 — клапан автоматической регулировки давления; 5 — индуктор источника индукционно-связанной плазмы (ІСР источника); 6 — газовый ввод; 7 — оптический порт (использовался в работе для ввода лазерного излучения); 8 и 9 — соответственно источник и приемник спектрального эллипсометра; 10 — линии подачи прекурсоров; 11 — клапан изолирования источника плазмы (может использоваться для коммутации лазерного излучения), 12 и 13 — оптические порты соответственно приемника и источника спектрального эллипсометра с заслонками

точник плазмы на время напуска прекурсора в камеру. Кроме того, этот же затвор использовался в работе для коммутации излучения лазера, если лазер работал в непрерывном режиме.

Установка оснащена автоматическим вакуумным загрузчиком-шлюзом (loadlock), который позволяет загружать и разгружать пластины без напуска атмосферы в камеру реактора. Установка позволяет работать с пластинами диаметром до 200 мм. В экспериментах по исследованию влияния лазерного облучения на процесс АСО пленок оксида алюминия на стадиях продувки реактора использовались монокристаллические кремниевые пластины КДБ-12(100) диаметром 100 мм. Остаточное давление в реакторе составляло 1,3·10⁻⁴ Па, а температура термостолика-подложкодержателя, на котором располагалась обрабатываемая пластина, стабилизировалась на уровне 300 °С.

Контроль толщины пленок двуокиси кремния (SiO₂) и оксида алюминия (Al₂O₃) и равномерности их распределения по поверхности пластин осуществлялся на спектральном эллипсометре M-2000X компании J.A. Woollam Co. Inc. (США), способном проводить измерения на 479 различных длинах волн в диапазоне от 246,3 до 999,8 нм.

Используемый спектральный эллипсометр имеет два режима работы, которые позволяют проводить измерения как в лабораторных условиях вне установки АСО (ex situ), так и непосредственно на установке FlexAL в процессе ACO (in situ). При ех situ измерениях прибор установлен на специальной автоматизированной платформе с координатным столом для пластин диаметром до 200 мм. Имеется возможность ручной калибровки наклона стола. Платформа оснащена механизмом для вертикального перемещения эллипсометра относительно координатного стола. В экспериментах на спектральном эллипсометре проводились измерения вне установки ACO (ex situ).

На монокристаллических кремниевых пластинах КДБ-12(100) диаметром 100 мм, используемых в экспериментах, с помощью спектрального эллипсометра была предварительно измерена толщина равновесного естественного окисла, среднее значение которой составило 2 нм.

Для лазерного облучения поверхности кремниевых пластин при осаждении пленок оксида алюминия на стадиях продувки реактора через оптический порт 7 (puc. 1) использовался хирургический лазер (лазерный скальпель) модель ЛСП 0.97/20 компании «ИРЭ-Полюс» с длиной волны 970 нм и регулируемой выходной мощностью в диапазоне от 1,0 до 20 Вт. На указанной длине волны энергия квантов лазерного излучения немного превышает значение энергии адсорбции молекул воды на поверхности оксида алюминия (см. следующий раздел статьи).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Общая циклограмма стандартного процесса АСО пленки Al₂O₂, реализуемая в экспериментах на установке FlexAL, приведена на рис. 2. На кремниевую пластину образца L3 пленка оксида алюминия осаждалась в течение 200 циклов АСО по циклограмме, показанной

Рис. 2. Общая циклограмма стандартного процесса атомнослоевого осаждения пленки оксида алюминия (Al₂O₂), реализуемая в экспериментах на установке FlexAL. Давление в емкости с ТМА определяется стабилизацией ее температуры на уровне 35 °C, а давление в емкости с водой определяется стабилизацией ее температуры на уровне 18 °С

на рис. 2, без лазерного облучения поверхности пластины. На рис. За приведена карта распределения толщины осажденной пленки Al₂O₂ по поверхности пластины, полученная с помощью измерения на спектральном эллипсометре. Средняя толщина пленки оксида алюминия по пластине составила 16,60 ± 0,21 нм.

Центральная часть кремниевой пластины образца L4 диаметром 3 см в процессе 200 циклов ACO на стадиях продувки облучалась в течение 5 секунд лазером с длиной волны 970 нм и плотностью мощности 0,29 Вт/см². При этом шаги 2 и 4 циклограммы на рис. 2 имели следующий вид: 1 секунда (продувка) + 5 секунд (продувка и облучение лазером) + 2 секунды (продувка) = 8 секунд. На рис. Зб приведена карта распределения толщины осажденной пленки Al₂O₂ по поверхности пластины образца L4. Средняя толщина пленки на облученном и на не облученном участках пластины составила $17,20 \pm 0,15$ нм, т.е. не отличались по толщине.

Центральная часть кремниевой пластины образца L5 диаметром 3 см в процессе 200 циклов АСО на стадиях продувки облучалась в течение 5 секунд лазером с длиной волны 970 нм и плотностью мощности 2,1 Вт/см². Средняя толщина пленки на облученном и на не облу-

Рис. 3. Распределение толщины пленок Al₂O₂ в нанометрах, осаждаемых в процессах АСО, по поверхности пластин: а образец L3 без лазерного облучения; б и в — образцы L4 и L5 с облучением в течение 5 секунд на стадиях продувки центральной части пластины диаметром 3,0 см лазером с длиной волны 970 нм и плотностью мощности соответственно 0,29 и 2,1 Вт/см²

ченном участках пластины составила 17,34 ± 0,20 нм, т.е. не отличалась по толщине.

Таким образом, локальное облучение лазером с длиной волны 970 нм и различной плотностью мощности на стадиях продувки реактора в процессе АСО пленки оксида алюминия не приводит к практически значимому различию локальной скорости осаждения на облученных и на не облученных участках пластин. Кроме того, локальное лазерное облучение с различной плотностью мощности в течение 5 секунд на стадиях продувки в процессе 200 циклов АСО пленок Al₂O₃ не существенно (на 0,6-0,74 нм) изменяет суммарную толщину осаждаемых на пластины пленок, вероятно, из-за небольшого нагрева пластин относительно заданной термостоликом температуры в 300 °С.

Полученные экспериментальные данные об отсутствии влияния лазерного облучения с длиной волны λ = 970 нм на десорбцию молекул воды в процессе ACO пленок Al₂O₃ противоречат результатам работы [16], согласно которой энергия адсорбции молекул воды на поверхности слоя оксида алюминия составляет 1,26 эВ.

Действительно, энергия квантов є ИК лазера с длиной волны $\lambda = 970$ нм определяется по формуле [17]:

$$\mathbf{E} = \mathbf{h} \cdot \mathbf{v} = (\mathbf{h} \cdot \mathbf{c}) / \lambda, \tag{1}$$

где h — постоянная Планка (6,63·10⁻³⁴ Дж·с); v — частота излучения, Гц; с — скорость света (2,99·10⁸ м/с).

Расчет по формуле (1) дает величину энергии квантов нашего лазера $\varepsilon = 2,04 \cdot 10^{-19}$ Дж, или, с учетом, что 1 эВ = 1,6·10⁻¹⁹ Дж, є = 1,28 эВ. Эта величина энергии квантов превышает энергию адсорбции молекул воды на поверхности слоя оксида алюминия [16], и если не влияет на скорость процесса АСО пленок Al₂O₃, то должна изменять структуру и/или химический состав пленок оксида алюминия на облучаемых участках поверхности пластин.

Для установления наличия таких фактов облучаемые и не облучаемые лазерным излучением участки осажденных пленок Al_2O_3 на образцах пластин L3, L4 и L5 были исследованы:

 на многофункциональном рентгеновском дифрактометре SmartLab компании Rigaku (Япония);

— на сканирующем зондовом микроскопе SmartSPM компании AIST-NT (Россия);

 и на системе вторичной ионной масс-спектрометрии (ВИМС — SIMS — Secondary Ion Mass Spectrometry) TOF.SIMS 5 компании IONTOF (Германия).

На рентгеновском дифрактометре SmartLab по рефлектограммам проводились измерения средней плотности пленок оксида алюминия $\rho(Al_2O_3)$ на облученных и на не облученных лазером образцах пластин L3, L4 и L5. Использовалась геометрия параллельного пучка рентгеновского излучения с длиной волны λ(CuK_{α1}) = 0,15406 нм в режиме сканирования 20 с угловым шагом $\Delta \theta = 0,004^{\circ}$. Пределы относительной погрешности при измерении интенсивности рефлектограмм на указанном дифрактометре лежат в диапазоне ±2 % при доверительной вероятности 0,95. Результаты измерений приведены в табл. 2.

Из табл. 2 видно, что не облученная пленка оксида алюминия на всех пластинах имеет среднюю плотность в диапазоне 3,24-3,23 г/см³, тогда как облученная пленка оксида алюминия на образце L4 имела среднюю

Таблица 2. Средняя плотность пленок оксида алюминия ρ (Al₂O₃) на облученных и на не облученных лазером образцах пластин *L3*, *L4* и *L5*

Образец пластины	ρ(Al ₂ O ₃), г/см ³
L3 (не облучаемая пластина)	3,24
L4 (не облученный участок)	3,24
L4 (облученный участок)	2,94
<i>L5</i> (не облученный участок)	3,23
L5 (облученный участок)	3,11

плотность 2,94 г/см³, а на образце *L5* — 3,11 г/см³. Такие различия (до 10 %) в средней плотности облученных и не облученных пленок оксида алюминия не могут быть связаны с ошибкой измерения, а определяются изменением механизма осаждения пленок под воздействием лазерного излучения.

Авторы предполагают, что под воздействием лазерного излучения увеличилось расстояние между атомами алюминия или атомами кислорода в плоскости, параллельной поверхности подложки, что и зафиксировало рентгеновское излучение дифрактометра, также падающее параллельно поверхности подложки. Тогда как отсутствуют изменения толщины пленки Al_2O_3 на облучаемых и не облучаемых лазером участках подложки, фиксируемых лучом спектрального эллипсометра, падающим на подложку почти вертикально. Кроме того, наносимые методом ACO на полированные поверхности кремния пленки Al_2O_3 являются бездефектными.

Проведенные исследования на сканирующем зондовом микроскопе SmartSPM не выявили практически значимого перепада высот между облученными и не облученными участками пленок оксида алюминия на образцах пластин *L4* и *L5*, а также изменения поверхностного рельефа (шероховатости) на облученных и на не облученных участках. Результаты ВИМС-анализа по глубине облученных и не облученных участков пленок оксида алюминия на образце пластины *L4*, проведенного в системе TOF.SIMS 5, приведены на *puc. 4*.

Из полученных результатов следует, что элементное отношение алюминия и кислорода по глубине на облученных и на не облученных участках пленок Al_2O_3 на образце пластина *L4* совпадает (лежит в пределах погрешности эксперимента).

выводы

Как показано в работе, применение лазерного излучения с длиной волны $\lambda = 970$ нм в диапазоне плотности мощности 0,29–2,10 Вт/см² для облучения поверхности кремниевых пластин при атомно-слоевом осаждении пленок оксида алюминия из ТМА и паров воды на стадиях продувки реактора практически значимо:

 не изменяет скорость осаждения пленок оксида алюминия;

 не изменяет поверхностный рельеф (шероховатость) на облученных и на не облученных участках пленок;

 не изменяет химический состав облученных и не облученных пленок оксида алюминия по глубине;

 но может уменьшать на 5–10 % среднюю плотность пленок оксида алюминия на облученных участках по сравнению с не облученными участками.

Рис. 4. Распределения отношения алюминия к кислороду (Al/O) по глубине, полученные с помощью ВИМС-анализа, на облученных и на не облученных участках пленки оксида алюминия на образце пластины *L4*

56

Предположение авторов, что лазерное излучение увеличивает межатомные расстояния в осаждаемых пленках оксида алюминия, требует проведения дополнительных, более расширенных исследований. В этих расширенных исследованиях может быть использован метод XAFS спектроскопии, расшифровка и обработка спектров которой позволяет получить информацию о межатомных расстояниях в материале. Но это косвенный метод, основанный на расчетах. Тогда как применение высокоразрешающего электронного микроскопа дает возможность непосредственного измерения межатомного расстояния на электронных изображениях поперечного сечения пленки Al₂O₃ на облучаемых и не облучаемых участках.

Следует отметить, что такое поведение процесса ACO пленок оксида алюминия полностью противоположно осаждению пленок оксида алюминия в процессах XOГФ (CVD) с непрерывной подачей реагентов (прекурсоров). В процессах ХОГФ (CVD) фотонное и лазерное облучения значительно повышают скорости осаждения оксида алюминия из газовых реагентов на поверхность кремниевых пластин и сильно влияют на их химический состав и поверхностный рельеф [1].

Поэтому экспериментальная констатация того факта, что лазерное облучение в процессе ACO незначительно влияет на его механизм, в отличие от близкого к нему процесса ХОГФ (CVD), имеет научную ценность, открывающую целую область исследования. Эта область исследования должна ответить на вопрос: почему дискретные химические процессы более устойчивы к внешним воздействиям по сравнению с непрерывными химическими процессами?

Исследование структуры и состава пленок выполнено с использованием оборудования Центра коллективного пользования «Микросистемная техника и электронная компонентная база» Национального исследовательского университета МИЭТ, поддержанного Минобрнауки РФ (контракт № 14.594.21.0012, уникальный идентификатор RFMEFI59417X0012).

СПИСОК ЛИТЕРАТУРЫ

- Киреев В.Ю., Столяров А.А. Технологии микроэлектроники. Химическое осаждение из газовой фазы. М.: Техносфера, 2006. 192 с.
- Gutsche M., Seidl H., Hecht T. Schroeder U. Atomic layer deposition for advanced DRAM applications. In: Future Fab. 14th issue. London: Technology Publishing Ltd., 2003. P. 213–217.
- Семикина Т.В., Комащенко В.Н., Шмырева Л.Н. Нанотехнологии: основы метода атомного послойного осаждения, оборудование, применение в наноэлектронике. В книге: Электроника и связь. Тематический выпуск «Электроника и нанотехнологии». Часть 1. 2009. С. 60–66.
- Atomic layer deposition for semiconductors / Editors Cheol Seong Hwang, Cha Young Yoo. New York: Springer Science + Business Media, 2014. 263 p.
- Vogler D., Doe P. Atomic layer deposition special report: Where's the metal? // Solid State Technology. 2003. V. 46. P. 35–40.
- Алесковский В.Б. Стехиометрия и синтез твердых соединений. Л.: Наука, 1976. 140 с.
- Алесковский В.Б. Структурная организация вещества // Информационный листок дирекции НИИ химии и деканата химического факультета от 04.06.2002. № 15/02 (190). С. 1–4.
- Малыгин А.А. Нанотехнологии молекулярного наслаивания (обзор) // Российские нанотехнологии. 2007. Т. 2. № 3–4. С. 87–100.
- 9. Suntola T., Antson J. Surface chemistry of atomic layer deposition. U.S. Patent No. 4058430 (15.11.1977).

- Алехин А.П., Болейко Г.М., Гудкова С.А. Тетюхин Д.В. Синтез биосовместимых поверхностей методами нанотехнологий // Российские нанотехнологии. 2010. Т. 5. № 9–10. С. 128–136.
- Белов А.Н., Гусев Е.Э., Дюжев Н.А., Золотарев В.И., Киреев В.Ю. Суперконденсатор на основе КМОП-технологии. Патент РФ № 2629364 (07.12. 2016).
- 12. Путконен М., Тузовский В. Новые применения атомнослоевого осаждения // Наноиндустрия. 2010. № 5. С. 18–21.
- Репинский С.М. Химическая кинетика роста слоев диэлектриков // Современные проблемы физической химии поверхности полупроводников. Новосибирск: Наука. Сибирское отделение, 1989. С. 90–152.
- Майоров Э. Реализация нанотехнологии атомно-слоевого осаждения на оборудовании компании Beneq: от лаборатории к промышленности // Компоненты и технологии. 2013. № 10. С. 48–53.
- Искандарова И.М., Книжник А.А., Рыкова Е.А., Багатурьянц А.А., Уманский С.Я., Потапкин Б.В., Stoker М.W. Моделирование роста пленки в процессе атомного осаждения слоев // Физико-химическая кинетика в газовой динамике. 2006. № 4. С. 388–402.
- Сайко Д.С., Ганжа В.В., Титов С.А., Арсентьев И.Н., Костюченко А.В., Солдатенко С.А. Адсорбционные слои воды на поверхности тонких пленок оксида алюминия // Журнал технической физики. 2009. Т. 79. № 12. С. 86–91.
- Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике. 8-е изд. М.: Оникс, 2006. 1056 с.

57