05

Экспериментальное определение механических свойств анодного элемента рентгеновского литографа

© Н.А. Дюжев, Е.Э. Гусев, А.А. Дедкова, Д.А. Товарнов, М.А. Махиборода

Национальный исследовательский университет "МИЭТ", 124498 Москва, Россия e-mail: bubbledouble@mail.ru

Поступило в Редакцию 2 апреля 2020 г. Принято к публикации 2 апреля 2020 г. В окончательной редакции 2 апреля 2020 г.

Изготовлен анодный элемент рентгеновского литографа в виде мембранной структуры $PolySi/Si_3N_4/SiO_2$ по групповой технологии. Модернизирована конструкция стенда для определения механических свойств мембран. Критическое давление мембранной структуры диаметром $250 \,\mu$ m изменялось в диапазоне от 0.484 до 0.56 MPa для 15 образцов. Механическая прочность структуры $PolySi*/Si_3N_4/SiO_2$ составила 3.13 GPa. Новая модель в пакете Comsol показала хорошую корреляцию между экспериментальным критическим давлением и теоретической механической прочностью мембраны. Представлено распределение механических напряжений по мембране посредством моделирования и аналитического расчета. Доказано, что область разрыва структуры локализована на границе мембрана/подложка.

Ключевые слова: механическая прочность, мембраны, тонкие пленки, поликристаллический кремний, оксид кремния, нитрид кремния.

DOI: 10.21883/JTF.2020.11.49971.107-20

Введение

Десятикратное превышение дифракционного предела рабочей длины волны литографа 193 nm приводит к увеличению стоимости процесса и оборудования [1]. Вариант использования проекционной фотолитографии в глубоком ультрафиолете (EUV-литографии) с рабочей длиной волны 13.5 nm [2] при формировании критических размеров на чипе обладает недостаточной производительностью. Одним из возможных решений является безмасочная рентгеновская нанолитография [3], которая потенциально обладает высокой производительностью. В качестве источника рентгеновского излучения в литографе может быть рассмотрена рентгеновская трубка, включающая в себя катод и прострельный анод. Исследованию механических свойств прострельного анодного элемента посвящена настоящая работа (рис. 1). Анодный элемент должен выдерживать вакуумную атмосферу (избыточное давление в 0.1 MPa) рентгеновской трубки и обладать достаточной рентгенопрозрачностью за счет малой толщины материала в области мембраны. В качестве элемента мишени выбран материал поликремния, который позволяет сгенерировать волну длиной 13.5 nm. Слои SiO₂ и Si₃N₄ обладают сжимающими и растягивающими механическими напряжениями, что приводит к компенсации напряжений и повышению запаса механической прочности.

Одной из проблем в процессе разработки приборов электроники на основе кремния является достоверность сведений о механической прочности материалов [4], особенно с учетом размерного эффекта между объемными и пленочными материалами [5]. Поэтому необходимо совершенствовать метрологическую базу измерений. В работе [6] механическая прочность боросиликатного стекла измерена методом ударного сжатия. В работе [7] механическая прочность слоя нитрида галлия, сформированного методом гидриднохлоридной парофазной эпитаксии, определена посредством индентора. В настоящей работе авторы применяли бесконтактный метод выдувания тонкой пленки посредством избыточного давления, к достоинствам которого можно отнести отсутствие внесенных дефектов.

В настоящее время совершенствуются технологические подходы повышения механической прочности. Например, переходят от прямоугольной к круглой форме

Рис. 1. Недостаток механической прочности тонкопленочной мембраны.

мембраны [8]. Это связано с тем, что разрушение мембраны в большинстве случаев происходит по границе мембрана-подложка. Форма круга обеспечивает значительно меньшие значения упругих деформаций по сравнению с прямоугольной формой мембраны. Значения деформаций равномерно распределены по контуру мембраны и в материале мембраны [8]. Известен метод увеличения механической прочности, заключающийся в изменении стехиометрического соотношения между атомами в материале, например увеличение концентрации углерода в SiC [9]. К другим факторам повышения механической прочности относят: уменьшение поверхностных дефектов [10], изменение размера зерен структуры [11], легирование материала пленки атомами меди, цинка, магния, марганца, кремния [5].

1. Изготовление структуры

Использовали пластину из монокристаллического кремния КДБ12 диаметром 150 mm с кристаллографической ориентацией (100) и толщиной 670 μ m. Была сформирована круглая мембрана на Si кристалле квадратной формы со стороной 6 mm. Исследуемая мембранная структура состоит из верхнего слоя поликристаллического кремния толщиной $0.8 \pm 0.05 \,\mu$ m, слоя нитрида кремния толщиной $0.13 \pm 0.02 \,\mu$ m, и нижнего диэлектрического слоя оксида кремния толщиной $0.5 \pm 0.1 \,\mu$ m (рис. 2). Топология набора мембран представляет собой круг диаметром 0.25 mm, расположенный по центру кристалла. В мембране отсутствуют концентраторы механических напряжений за счет использования шаблона травления круглой формы.

Анализ механической прочности структуры

В следующих работах указан диапазон значений механической прочности пленки оксида кремния: от 1.2 до 1.9 GPa PECVD оксида кремния [12]; 0.364 ± 0.057 GPa РЕСVD SiO₂ толщиной $1.0\,\mu m$ [13]; $0.89 \pm 0.07 \,\text{GPa}$ термического SiO₂ для слоев толщиной от 507 до 985 nm [14]; 8.4 GPa для нитевидных структур из SiO₂ [15]. Значение механической прочности пленки нитрида кремния составляет 14.0 GPa [15-17]. В книге 2018 г. [18] указано, что механическая прочность пленки нитрида кремния, полученной методом LPCVD, изменяется в диапазоне от 10.8 до 11.7 GPa, при толщине пленки от 72.6 до 83.4 nm. По результатам работы [19] механическая прочность LPCVD нитрида кремния составляет 5.87 GPa. В процессе анализа литературы были найдены следующие значения механической прочности тонких слоев поликристаллического кремния: от 1.8 до 3.7 GPa в зависимости от размера зерен [20], 8.11 ± 0.31 GPa [21], 1.7 ± 0.5 GPa для площади поверхности $225\,\mu\text{m}^2,\,1.3\pm0.3\,\text{GPa}$ для $1100\,\mu\text{m}^2$ и 0.6 ± 0.2 GPa для $8600 \,\mu\text{m}^2$ [22], 1-1.2 GPa [23],

Рис. 2. Исследуемая структура: *а* — общий вид, *b* — срез структуры в области тонкой пленки.

 3.15 ± 0.69 GPa [24], от 0.8 до 1.1 GPa [25], от 1.0 до 1.5 GPa [26]. Для дальнейших расчетов было использовано значение механической прочности поликристаллического кремния 1.8 GPa, оксида кремния 0.365 GPa и нитрида кремния 14 GPa.

Теоретическое значение механической прочности (максимальных механических напряжений) мембраны $\sigma_{\rm T}$ вычисляется по формуле:

$$\sigma_{\rm T} = \frac{\sigma_{\rm Poly\,Si} h_{\rm Poly\,Si} + \sigma_{\rm SiO_2} h_{\rm SiO_2} + \sigma_{\rm Si_3N_4} h_{\rm Si_3N_4}}{h_{\rm Poly\,Si} + h_{\rm SiO_2} + h_{\rm Si_3N_4}}, \qquad (1)$$

где $h_{\text{Poly Si}}$ — толщина слоя поликристаллического кремния, $h_{\text{Si}O_2}$ — толщина оксида кремния, $h_{\text{Si}_3\text{N}_4}$ — толщина слоя нитрида кремния.

Рассчитанное значение $\sigma_{\rm T}$ составляет 3.2 GPa. Распределение механических напряжений по диаметру мембраны рассчитывается по формуле [5]:

$$\sigma = \frac{3P}{8h^2} \times \sqrt{\left((1+\mu)^2(2a^4-8a^2r^2)+r^4(10+12\mu+10\mu^2)\right)}, \quad (2)$$

где a — радиус мембраны, h — толщина мембраны, P — давление на мембрану, μ — коэффициент Пуассона мембраны, r — расстояние от центра мембраны.

Результаты расчета по формуле (2) распределения механических напряжений по диаметру мембраны показаны на рис. 3, *а*. Согласно аналитическому расчету, максимальные механические напряжения σ_{max} возникают, когда расстояние от центра (середины) мембраны равно радиусу, т.е. r = a. Таким образом, прогнозируемое значение критического избыточного давления P_{cr} рассчитывают по формуле (3) [5]:

$$P_{cr} = \frac{\sigma_{\max}h^2}{a^2 B(\mu)}.$$
 (3)

Коэффициент $B(\mu)$ рассчитывается как $\frac{3}{4}\sqrt{1 + \mu^2}$. Значение коэффициента Пуассона мембраны μ рассчитывается аналогично подходу в формуле (1). Учитывая, что $\mu_{\text{Poly Si}}$ составляет 0.22, μ_{SiO_2} составляет 0.2, $\mu_{\text{Si}_3N_4}$ составляет 0.23, то коэффициент Пуассона мембраны μ будет равным 0.21. Следовательно, значение коэффициента $B(\mu)$ составляет 0.76. Таким образом, согласно расчетам по формуле (2) для мембраны диаметром 0.25 mm прогнозируемое значение критического избыточного давления P_{cr} составляет 0.554 MPa.

Также была составлена модель в среде Comsol Multiphysics. Координаты области подложки от -325

Рис. 3. Распределение механических напряжений в мембране диаметром 0.25 mm: a — расчет по формуле при P = 5.4 atm; b — моделирование при P = 5.4 atm.

Рис. 4. Вид сверху на структуру после разрыва.

до $-125 \,\mu$ m и от 125 до $325 \,\mu$ m по оси X. Область мембраны расположена симметрично относительно координаты оси X = 0. В области мембраны была выбрана прямоугольная сетка, в которой 1040 элементов по оси X и 22 элемента по оси Y (каждый слой пленки разделен на 10 элементов, а слой Si₃N₄ на 2 в силу величины толщины слоя). В области кремниевой подложки выбран свободный треугольный тип сетки. Получена зависимость распределения механических напряжений мембраны диаметром 0.25 mm и в тонкой пленке при избыточном давлении 0.54 MPa (рис. 3, *b*), полученном из экспериментальных данных. Характер распределения напряжений в области мембраны совпадает с результатами, приведенными в работе 2020 г. [4].

Максимум механических напряжений локализован на границе мембрана/подложка. Разработанная модель в среде Comsol хорошо коррелирует (относительная погрешность 0.25%) с экспериментальными и теоретическими данными, так как при избыточном давлении 0.54 МРа максимальное значение механических напряжений составляет 3.17 GPa. Наблюдается отсутствие материала мембраны в полости кремния на изображении структуры после критической деформации мембраны (рис. 4). Таким образом, мембрана разрывается по границе мембрана/подложка.

Анализ двухосного модуля упругости структуры

Анализируя зависимость (формула (4)) прогиба мембраны w от избыточного давления P, можно определить двухосный модуль упругости $E/(1-\mu)$:

$$P = C_1 \frac{\sigma_0 h w}{a^2} + C_2 \frac{E h w^3}{(1-\mu)a^4},$$
(4)

где P — избыточное давление, σ_0 — остаточные механические напряжения в структуре при P = 0, h толщина мембраны, w — прогиб мембраны, a радиус мембраны, E — модуль Юнга, μ — коэффициент Пуассона. Значения коэффициентов C_1 и C_2 зависят от формы мембраны. Обычно при работе с круглыми мембранами используют $C_1 = 4$ и $C_2 = 8/3$. Зависимость P(w)можно разделить на крутую и пологую область. Критерий крутой области выполняется при малых значениях прогиба мембраны w, т. е. первое слагаемое значительно больше второго. Значение двуосного модуля упругости $E/(1-\mu)$ вычисляют на пологой области зависимости (4) при больших значениях прогиба мембраны w, т. е. значением первого слагаемого можно пренебречь (формула (5)):

$$\frac{E}{1-\mu} = \frac{Pa^4}{C_0 hw^3}.$$
(5)

Модуль Юнга нитрида кремния составляет 225 GPa [19], модуль Юнга оксида кремния составляет 60.1 \pm 3.4 GPa [13], а модуль Юнга поликристаллического кремния 155 GPa [16,20]. Следовательно, модуль Юнга мембраны составляет 128 GPa. Теоретическое значение двуосного модуля упругости мембраны $E/(1-\mu)$ составит 162 GPa при коэффициенте Пуассона мембраны μ равном 0.21 рассчитанном ранее.

Ниже представлена зависимость максимального прогиба мембраны от избыточного давления (рис. 5). В формуле (4) величина остаточных напряжений в структуре составляет 100 МРа. Для повышения корреляции между расчетом по формуле (4), моделированием в среде Comsol и экспериментальными данными величина начального прогиба (при P = 0) составляет 4.5 μ m при моделировании и в аналитическом расчете, также величина двуосного модуля упругости $E/(1 - \mu)$ составляет 85 GPa.

Из рис. 5 можно сделать несколько выводов. Относительная погрешность формулы с экспериментальными данными составляет 3.24%, а относительная погрешность моделирования с экспериментальными данными составляет 3.02%. Исходная структура имеет значительную величину прогиба мембраны, которая не учитывается в исходной формуле и в модели Comsol. Рассчитывая

Рис. 5. Зависимость максимального прогиба мембраны от избыточного давления для диаметра 0.25 mm.

Рис. 6. Экспериментальная зависимость прогиба мембраны от избыточного давления.

по формуле (5) модуль упругости из экспериментальных данных при давлении P, равном 0.32 MPa, получим значение 20 GPa, что в несколько раз меньше теоретического значения. Это может быть связано с тем, что экспериментально измеренный массив значений w(P) расположен в крутой области зависимости (4). Следовательно, необходимо разрабатывать оснастки для защиты профилометра от материала взрывающейся мембраны во время сканирования. Это позволит получить больший массив данных w(P), что приведет к повышению точности определения двуосного модуля упругости.

Экспериментальное измерение механической прочности

Для определения механических свойств мембранных элементов был модернизирован ранее разработанный стенд [5]. Избыточное давление подается с магистрали (вместо компрессора). Таким образом, расширен верхний диапазон величины давления до 0.65 MPa, увеличена стабильность значения давления в системе.

Были экспериментально определены значения критического избыточного давления на модернизированном стенде. При диаметре 0.25 mm механическая прочность мембраны PolySi/Si₃N₄/SiO₂ составляет 0.52 ± 0.04 MPa для диаметра 0.25 mm (15 образцов). Заметно, что полученные результаты обладают высокой воспроизводимостью. Экспериментальное значение механической прочности трехслойной мембраны составляет 3.13 GPa.

В процессе проведения эксперимента при избыточных давлениях более 0.32 МРа прогиб мембраны не измерялся (рис. 6). Ограничение связано с защитой дорогостоящего объектива профилометра от материала разрывающейся мембраны. Разрыв мембраны может произойти в процессе сканирования поверхности образца профилометром.

Выводы

Экспериментальное значение механической прочности трехслойной мембраны PolySi/Si₃N₄/SiO₂ составляет 3.13 GPa, двуосный модуль упругости E/(1-u)

составляет 20 GPa. Критическое избыточное давление мембранных структур из PolySi/Si₃N₄/SiO₂ на кремниевой подложке составляет 0.52 ± 0.04 MPa для диаметра 0.25 mm. Полученный результат позволяет использовать данные мембраны в качестве анодов рентгеновских источников прострельного типа с запасом механической прочности в несколько раз. Повышение механической прочности объясняется эффектом использования набора слоев вместо монослоя мембраны; эффектом повышения механической прочности пленок за счет модернизации технологии осаждения.

Финансирование работы

Работы выполнены на оборудовании ЦКП "МСТ и ЭКБ" НИУ МИЭТ при поддержке Минобрнауки РФ (ГК № 14.581.21.0021, УН RFMEFI58117X0021).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Дюжев Н.А., Демин Г.Д., Пестов А.Е., Салащенко Н.Н., Чхало Н.И. // Микроэлектроника-2019. С. 429.
- Wu B., Kumar A. // Appl. Phys. Rew. 2014. Vol. 1. N 1. DOI: 10.1063/1.4863412
- [3] Chkhalo N.I., Lopatin A.Ya., Pestov A.E., Salashchenko N.N., Gemin G.D., Dyuzhev N.A., Makhiboroda M.A. // Proc. SPIE. 2019. Vol. 110221M. DOI: 10.1117/12.2522105
- [4] Шпейзман В.В., Николаев В.И., Поздняков А.О., Бобыль А.В., Тимашов Р.Б., Аверкин А.И. // ЖТФ. 2020.
 Т. 90. Вып. 1. С. 79–84. [SHpejzman V.V., Nikolaev V.I., Pozdnyakov A.O., Bobyl' A.V., Timashov R.B., Averkin A.I. // Tech. Phys. 2020. Vol. 90. N 1. P. 79–84. DOI: 10.21883/JTF.2020.01.48665.148-19]
- [5] Gusev E.E., Borisova A.V., Dedkova A.A., Salnikov A.A., Kireev V.Y. // 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 2019. № 8657243. P. 1990–1994. DOI: 10.1109/eiconrus.2019.8657243
- [6] Савиных А.С., Канель Г.И., Разоренов С.В. // ЖТФ.
 2010. Т. 80. Вып. 6. [Savinykh A.S., Kanel G.I., Razorenov S.V. // Tech. Phys. 2010. Vol. 55. N 6. P. 839– 843. DOI: 10.1134/S1063784210060150]
- [7] Жиляев Ю.В., Раевский С.Д., Грабко Д.З., Леу Д.С., Компан М.Е., Юсупова Ш.А., Щеглов М.П. // Письма в ЖТФ. 2005. Т. 31. Вып. 9. С. 20–25. [Zhilyaev Y.V., Raevskii S.D., Grabko D.Z., Leu D.S., Kompan M.E., Yusupova S.A., Shcheglov M.P. // Tech. Phys. Lett. 2005. Vol. 31. N 5. P. 367– 369. DOI: 10.1134/1.1931770]
- [8] Vlasov A., Civinskaya T., Shahnov A. // MES-2016. 2016.
- [9] Шикунов С.Л., Курлов В.Н. // ЖТФ. 2017. Т. 87. Вып. 12.
 С. 1871–1878. [Shikunov S.L., Kurlov V.N. // Tech. Phys. 2017. Vol. 62. N 12. P. 1869–1876.
 DOI: 10.1134/S1063784217120222]
- [10] Mueller M.G., Fornabaio M., Zagar G., Mortensen A. // Acta Mater. 2016. Vol. 105. P. 165–175.
 DOI: 10.1016/j.actamat.2015.12.006

- [11] Ramnath Venkatraman, John C. Bravman // J. Mater. Res. 1992. Vol. 7. N 8. P. 2040–2048. DOI: https://doi.org/10.1557/JMR.1992.2040
- [12] Tsuchiya T., Inoue A., Sakata J. // Sensors and Actuators. 2000. Vol. 82. P. 286-290.
 DOI: 10.1016/S0924-4247(99)00363-5
- [13] Sharpe W.N., Pulskamp J., Gianola D.S., Eberl C., Polcawich R.G., Thompson R.J. // Experiment. Mechan. 2007.
 Vol. 47. P. 649–658. DOI: 10.1007/s11340-006-9010-z
- [14] Jinling Yang // J. Microelectromechan. System. 2008. Vol. 17. N 5.
- [15] Petersen K. // Proceed. IEEE. 1982. Vol. 70. N 5. P. 420-457.
- [16] Tai-Ran Hsu. MEMS and Microsystems: Design and Manufacture. Boston: McGraw-Hill Education, 2002. 436 p.
- [17] Marc Madou. Fundamentals of Microfabrication. London: Taylor & Francis, 1997. 589 p.
- [18] *Qing An Huang.* Micro Electro Mechanical Systems. Singapore: Springer, 2018. 1479 p.
- [19] Edwards R.L., Coles G., Sharpe W.N. // Experiment. Mechan.
 2004. Vol. 44. N 1. P. 49–54. DOI: 10.1007/bf02427976
- [20] Tsuchiya T., Sakata J., Taga Y. // MRS Proceedings. 1998.
 Vol. 505. P. 285–290. DOI:10.1557/proc-505-285
- [21] Ozaki T., Koga T., Fujitsuka N., Makino H., Hohjo H., Kadoura H. // Sensors Actuators A-Physical. 2018. Vol. 278.
 P. 48–59. DOI: 10.1016/j.sna.2018.05.034
- [22] Vayrette R., Raskin J.-P., Pardoen T. // Eng. Fract. Mechan. 2015. Vol. 150. P. 222–238.
- [23] Boyce B.L., Grazier J.M., Buchheit T.E., Shaw M.J. // J. Microelectromech. Syst. 2007. Vol. 16. N 2. P. 179–190.
- [24] Kaiser B., Drabe C., Graßhoff T., Conrad H., Schenk H. // J. Micromech. Microeng. 2015. Vol. 25. DOI: 10.1088/0960-1317/25/8/085003
- [25] Sharpe W.N., Bagdahn J. // Mechan. Mater. 2004. Vol. 36.
 N 1–2. P. 3–11. DOI: 10.1016/s0167-6636(03)00027-9
- [26] Sharpe W.N., Turner K.T. // FATIGUE 99 Proceedings of the Seventh International Fatigue Congress. 1999. P. 1837– 1844.