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The tunnel magneto-Seebeck effect and an initiation of heat-driven spin-transfer torque in mag-
netic tunnel junctions (MTJs) have recently attracted great attention of researchers in the field of spin
caloritronics [1,2]. In addition, these phenomena are important for the study of alternative mecha-
nisms of spin transfer in magnetic heterostructures, which can also serve to improve the technical ca-
pabilities of the developed magnetoresistive memory elements and temperature-sensitive microwave
devices [3]. The spin-torque diode effect in MTJ is the effect of rectifying voltage due to microwave
modulation of its resistance induced by input microwave current, when a non-stationary spin torque is
transferred from one magnetic layer (spin polarizer) to another (free layer). Such a spin-torque diode
can exhibit a very high microwave sensitivity of the resonant type [4]. On the other hand, inhomoge-
neous heating of the spin-torque diode occurs under its microwave irradiation, which is associated with
a temperature drop across the tunnel barrier of MTJ. Due to the presence of tunnel magneto-Seebeck
effect and heat-driven spin-transfer torques, the thermoelectric voltage rectification in MTJ occurs at
a given microwave power, which can make an additional contribution to the microwave sensitivity of a
spin-torque diode (Fig. 1).

Figure 1. (a) — The temperature increment T − T0 (in mK) of MTJ generated by its microwave irradiation with
the input microwave power of 1 μW, where T0 = 20 K. (b) — Frequency dependence of the amplitude
of rectified signal generated across the simple tri-layer MTJ caused by microwave heating of the spin-
torque diode, calculated for the considered MTJ structure, when the input power is varied from 1 to 10
μW and the magnetic field is about 50 mT
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It is worth noting that the magnon transfer of spin flux in MTJ with the insulating ferrite caused by
its microwave heating can lead to a significant increase in microwave sensitivity of spin-torque diode,
which is associated with a predictable amplification of thermomagnonic spin-transfer torque in such
structures compared to conventional MTJs [5] and has not been analyzed before. Another way to en-
hance the thermoelectric effect in a spin-torque diode is to use thermal barriers (BiTe, GeSbTe) on both
sides of a thin dielectric layer of MTJ, which can increase the heat-induced spin current for a given
microwave power [6].

Earlier, we carried out our first theoretical estimates of the thermoelectric contribution to the sen-
sitivity of a spin-torque diode based on tri-layer MTJ related to the thermal transfer of spin angular
momentum in the MTJ under its non-uniform heating by microwave current [7]. In this work, we ob-
tained temperature profiles of different types of MTJ (tri-layer MTJ, MTJ with the insulating ferrite, MTJ
with the thermal barriers) under its microwave irradiation (Fig. 1a), on the basis of which microscopic
calculations of the spin-dependent Seebeck coefficients, heat-driven spin-transfer torques in combi-
nation with calculations of the microwave sensitivity were performed. As a result, issues of increasing
sensitivity of a spin-torque diode by heat-driven spin-transfer torque in a magnetic heterostructure and
the possibility of using such structures as a bolometer for microwave visualization of objects are also
discussed.

The work was performed using the equipment of MIET Core Facilities Center “MEMSEC” and sup-
ported by the Russian Federation President Grant (No. MK-1704.2019.9).
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