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ABSTRACT 

A three-dimensional numerical model of a thermal accelerometer with a thermal resistance effect in a 

sensitive element on a thin-film multilayer membrane based on MEMS technology has been developed and 

tested. The change in temperature difference on thermistors in the acceleration range from 1 to 10g and the 

applicability of the proposed technological solution for the implementation of thermal inertial systems are 

analyzed. The results obtained can be used for the optimization and development of a multi-axis thermal 

accelerometer. 
Keywords: MEMS, accelerometer, thermistor, COMSOL Multiphysics, physical modeling 

 

INTRODUCTION 

The scope of applications of the linear acceleration MEMS sensors is constantly growing. Nowadays each 

smartphone is equipped with built-in accelerometers and gyroscopes, and, according to Yole Développement 

estimations [1], the MEMS accelerometer market is about 1.5 billion dollars and will not decrease in the 

coming years. Unmanned aerial vehicles (drones) and Internet of Things should become the next market 

drivers and further expand the application areas for MEMS sensors, including accelerometers. In addition to 

increasing sensitivity and reducing costs, modern accelerometers require high reliability, resistance to 

dynamic and shock loads and a significant reduction in weight and size. MEMS technology has long 

established itself in the field of mass production of sensors. There are several types of MEMS accelerometers 

that measure acceleration using different physical phenomena [2], each of which has its advantages and 

disadvantages. In this work we propose the thermoresistive MEMS accelerometer, which measures the heat 

distribution under acceleration instead of measuring the deviation of the moving mass. Avoiding the use of 

moving parts offers a lot of advantages in terms of sensor reliability, impact resistance and zero-g offset 

stability [4-12]. 
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MODEL 

The model requires the interaction of three different physical modules, including the Joule effect, the heat 

dissipation and the effect of the laminar flow. The interactions between the different modules are presented in 

Figure 1. 

  

(b)

 
Fig. 1. (a) Physical modules and their interaction. (b) 3D view of the membrane-based sensitive element of 

the thermoresistive MEMS accelerometer in COMSOL MultiPhysics. 

 

Algorithm of the interaction of physical modules is presented in Figure 1a. «Electric current» module 

calculates the distribution of electric current in central resistor. Based on these data, «Heat transfer» module 

determines heat generated by current in central resistor and dissipation of the heat power in atmosphere. In 

turn, «Material properties» module calculates density of atmosphere on every point and transmit this data to 

«Laminar flow» module. Laminar flow apply force to atmosphere, which redistributed by the different 

density. 

A simulation of a simplified model of a single resistor in the atmosphere was carried out and the temperature 

difference for different gas volumes (pipe diameters) was considered. The measurements were carried out for 

the following diameters 0.1mm-1.5mm with a step of 0.1mm, as well as 1mm-15mm with a step of 1mm. An 

example of heat distribution in a simplified model is shown in Figure 2. 
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Fig. 6. Difference between the temperatures at the accelerometer points at zero acceleration and at 100 m/s2 , 

diameter of tube is 20mm.   

 

For the simulation based on a simplified model of accelerometer (see Fig. 4), the following parameters were 

used. The simulation was carried out for the acceleration range from 0 to 100 m/s2 in the presence of 1g of the 

earth's gravity directed downward. As a result of the simulation, curves were obtained showing the 

temperature difference at each point of the cross section shown in Figure 7, at the accelerations indicated 

above. The results can be seen in Figure 8.  
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Fig. 7(a). Temperature difference between zero and 10g acceleration depending on the list of small tube 

diameters: from 0.1 to 1.5 mm. 
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Fig. 7(b). Temperature difference between zero and 10g acceleration depending on the list of large tube 

diameters: from 1 to 15 mm. 

 

Based on these data, a temperature difference was calculated between points with maximum temperature and 

symmetrical around zero point. The results are presented in Fig. 8. 
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Fig 8(a) Optimal position of the thermal resistors from the center for achieving maximum sensitivity, 

depending from the small tube diameter (from 0.1 to 1.5 mm). 

  
Fig. 8. (b) Optimal position of the side thermal resistors from the center for achieving maximum sensitivity, 

depending from the large tube diameter (from 1 to 15 mm). 
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CONCLUSIONS 

Numerical simulation of the characteristics of thermoresistive MEMS accelerometer was carried out using the 

finite-element three-dimensional model of thermal gas dynamics of the device. This model was developed in 

Comsol MultiPhysics software based on fitting the simulation results to the experimental data of the thermal 

distribution in the sensing element of MEMS accelerometer [3] in the absence of horizontal acceleration. The 

presented model can be used in the future to evaluate the performance of various topologies of the thermal 

MEMS accelerometer in order to increase its sensitivity. As a result of the 2D simulation, it can be concluded 

that the sensitive resistors are optimally positioned for maximum sensitivity at different volumes of the 

working gas. The sensitivity of the device is proportional to the temperature difference, therefore an increase 

in the diameter of more than 5 mm is not rational. When choosing a diameter below this, it is necessary to 

choose the largest diameter available from, to obtain the largest possible temperature difference on the 

measuring thermistors.  
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