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ABSTRACT 

Full fabrication process of nanoscale vacuum channel and gate-all-around nanowire transistors at the 45, 32 and 22 nm 
technology nodes was simulated in Silvaco TCAD. Comparative analysis of operation modes was made on the basis of 
the obtained structures. It was shown that nanoscale gate-all-around transistor has sufficiently low power consumption 
while vacuum channel field effect transistor makes it possible to achieve performance that exceeds performance which 
can be obtained from the transistor with semiconductor channel. The combination of the above technologies can serve as 
approach to the creation of low-power and high-speed nanoscale vacuum devices using established complementary 
metal-oxide-semiconductor (CMOS) technology. 
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1. INTRODUCTION 

Today significant progress has been achieved in the area of scaling of nanoelectronic devices, where minimal design 
standards approach a level of 10 nm or even below1. However, at the same time, it becomes clear that design standards of 
nanoelectronics have almost reached its physical limits. A further development in the field of miniaturization of 
nanoelectronic devices requires new actual approaches and solutions. One of these approaches is a creation of transistor 
with non-planar geometric structure. Gate-all-around nanowire field effect transistor (GAA FET) is a great example of 
such new configuration. This type of field-effect transistor is a result of further improvements in construction of FinFET. 
Generally, GAA FET has several advantages: immunity to the short-channel effect; lower switching energy and signal 
propagation delay compared to FinFETs and compatibility to current CMOS technology2,3. 

 

It is well known that electron-phonon scattering in semiconductors initially limits performance of CMOS transistors. 
Replacing silicon with vacuum as a conveying medium can help to avoid performance restriction4. The use of nanoscale 
vacuum channel provides maximum charge-carrier lifetime and high frequency/power consumption ratio and eliminates 
the need for high vacuum since the probability of electron collisions with gas molecules in air is practically negligible on 
the scales of 100 nm and below. However, previous studies show that vacuum transistor has higher operation voltage 
than modern conventional solid state FETs, although it can be reduced by technological scaling. Additional advantage of 
nanoscale vacuum devices is a resistance to the harsh environmental conditions such as ionizing radiation and high 
temperature that would make these devices suitable for the aerospace applications5-7. 

 

Thus, this paper is organized as follows. Section 2 contains description of the supposed transistor structures used in 
simulation, numerical method for the calculation of emission current from non-planar curved emitters, and, besides that, 
the description of fabrication route of silicon field-emitter array. The results of simulation of the obtained transistor 
structures are presented in Section 3. Final conclusions are summarized in Section 4. 
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2. MODELS AND BASIC EQUATIONS 

Fabrication process of nanoscale vacuum channel transistor, which was implemented into Silvaco TCAD using Victory 
Process module8, was based on actual fabrication process of silicon field emitter array. This array was made in the 
following way: n-type silicon wafers doped with phosphorus with (100) crystallographic orientation and 150 nm in 
diameter were used. Wafers were oxidized in wet O2 (0.3 μm SiO2 layer was obtained), Si3N4 layer was deposited as a 
masking layer (thickness of Si3N4 layer was 0.13 μm) after oxidation, and then photolithography was performed on 
wafers to form oxide-nitride caps for the following etching process. The curved profile of the pillars was made using 
plasma-chemical etching in a mixture of SF6 and O2 with anisotropy coefficient of 2.5.  

 

Final oxidation process transforming silicon pillars into sharp tips was performed in dry O2 ambient and after that SiO2 

layer along with nitride layer was removed from the substrate. The minimal radius of emitter tip curvature was about 3 
nm. Figure 1 shows SEM images of the obtained structures. 

 
Figure 1. SEM images of the sample of field emitter array. Left: curved pillar with masking oxide-nitride cap. Right: 

complete silicon field emitter. 

Similar fabrication process was simulated in Silvaco TCAD, but in addition to the creation of emitter tip, formation of 
aluminum gate (control grid) and anode electrodes was appended to the route to obtain a structure of the vertical vacuum 
transistor. Structural parameters of the transistor: substrate orientation – (100); substrate doping – As, 5 × 1018  cm-3; 
radius of tip curvature – 5 nm; distance from the end of tip to gate – 25 nm. Main technological parameter of scaling was 
defined as a distance between anode electrode and cathode tip (according to the channel length in conventional FETs). 
Cathode-anode distance was varied from 45 to 22 nm. Images of transistor structure on various fabrication stages are 
presented in Figure 2.  

 

The model of gate-all-around field-effect transistor was also created in Silvaco TCAD using process simulation. This 
model was based on the following fabrication route: lightly and highly doped N-type profiles were formed consistently 
on the silicon wafer with (100) orientation. Thin silicon pillars were made using etching, and oxidation of pillars was 
performed to obtain gate oxide. After these steps two insulating oxide and one polysilicon gate layers was deposited. 
Drain contacts were get from deposited aluminum layer. 
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Figure 2. Images of the technological steps of formation the structure of vacuum channel transistor using Silvaco Victory 
Process 

 

Structural parameters of gate-all-around nanowire transistor used in simulation: thickness of gate oxide – 2 nm; nanowire 
(pillar) diameter – 15 nm; nanowire length – 75 nm; source and drain doping – 1 × 1019  cm-3; channel doping – 1 × 1015  

cm-3 . Channel length was varied from 45 to 22 nm, as in the case of nanoscale vacuum channel transistor. Images of the 
gate-all-around transistor structure on various stages of the fabrication process are presented in Figure 3. 

 
Figure 3. Images of the structures obtained during the fabrication process of nanowire gate-all-around transistor from 
Silvaco Victory Process. 
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Geometrical structure of vacuum channel transistor was imported from Silvaco TACD into COMSOL MultiPhysics9. 
Three-dimensional cylindrical model of vacuum transistor was made on the basis of transistor structure. This model is 
shown in Figure 4. 

 

Figure 4. 3D model of vacuum channel transistor used in COMSOL MultiPhysics. 

 

Full 3D electrostatic simulation of vacuum nano-channel transistor and electron transport from emitter to anode was 
performed, where the emission current from a silicon tip was calculated taking into account the geometry of the tip by 
performing the integral over emitting surface: 

 	I = ∬ JdS = JAୣ୤୤ୣ୫୧୲୲୧୬୥	ୱ୳୰୤ୟୡୣ  (1) 

Where I is resulting emission current, J is emission current density, and Aeff is effective area of emission. 

 

Victory Device simulator was used to get current voltage characteristics of the gate-all-around field-effect transistor. 
Model of Shockley-Read-Hall recombination using concentration dependent lifetimes (SRH) and transverse-electric-
field dependent mobility model (CVT) were used during device simulation11. 

 

3. RESULTS 

Figure 5 presents the current-voltage characteristics of the vacuum channel transistor with variation of the cathode anode 
distance. Figure 6 shows the current voltage characteristics of emission current recalculated in the Fowler-Nordheim 
coordinates. Voltage at anode electrode was fixed at 90 V. It can be seen, that emission occurs at a gate voltage of about 
25 V.  
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Figure 5. Current voltage characteristics of the vacuum channel transistor at different cathode-anode distances. 

 

 
Figure 6. Current -voltage characteristics of the vacuum channel transistor at different cathode-anode distances (in the 
Fowler-Nordheim coordinates). 

Figure 7 shows electric field distribution on the surface of emitter tip measured in V/nm. It is clearly seen that electrical 
field distribution agrees well with the theoretical model. Analysis of the distribution as a function of the cathode-anode 
distance also showed that when the distance decreases, the influence of the transistor gate increased, which can interfere 
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with the normal functioning of the device. Cut-off frequency dependence of the transistor that defines its performance 
was also derived from calculating the time spending for recharging of the cathode-gate capacitance. This characteristic is 
shown at Figure 8. 

 

 
Figure 7. Electric field distribution on the emitting cathode surface. 

 

 
Figure 8. Curve of the cut-off frequency of the transistor depending on the gate voltage with varied cathode-anode distance. 
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